skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Petkova, Maya A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The Central Molecular Zone (CMZ; the central ∼500 pc of the Galaxy) is a kinematically unusual environment relative to the Galactic disc, with high-velocity dispersions and a steep size–linewidth relation of the molecular clouds. In addition, the CMZ region has a significantly lower star formation rate (SFR) than expected by its large amount of dense gas. An important factor in explaining the low SFR is the turbulent state of the star-forming gas, which seems to be dominated by rotational modes. However, the turbulence driving mechanism remains unclear. In this work, we investigate how the Galactic gravitational potential affects the turbulence in CMZ clouds. We focus on the CMZ cloud G0.253+0.016 (‘the Brick’), which is very quiescent and unlikely to be kinematically dominated by stellar feedback. We demonstrate that several kinematic properties of the Brick arise naturally in a cloud-scale hydrodynamics simulation, that takes into account the Galactic gravitational potential. These properties include the line-of-sight velocity distribution, the steepened size–linewidth relation, and the predominantly solenoidal nature of the turbulence. Within the simulation, these properties result from the Galactic shear in combination with the cloud’s gravitational collapse. This is a strong indication that the Galactic gravitational potential plays a crucial role in shaping the CMZ gas kinematics, and is a major contributor to suppressing the SFR, by inducing predominantly solenoidal turbulent modes. 
    more » « less
  2. ABSTRACT Young massive clusters (YMCs) are compact (≲1 pc), high-mass (>104 M⊙) stellar systems of significant scientific interest. Due to their rarity and rapid formation, we have very few examples of YMC progenitor gas clouds before star formation has begun. As a result, the initial conditions required for YMC formation are uncertain. We present high resolution (0.13 arcsec, ∼1000 au) ALMA observations and Mopra single-dish data, showing that Galactic Centre dust ridge ‘Cloud d’ (G0.412 + 0.052, mass = 7.6 × 104 M⊙, radius = 3.2 pc) has the potential to become an Arches-like YMC (104 M⊙, r ∼ 1 pc), but is not yet forming stars. This would mean it is the youngest known pre-star-forming massive cluster and therefore could be an ideal laboratory for studying the initial conditions of YMC formation. We find 96 sources in the dust continuum, with masses ≲3 M⊙ and radii of ∼103 au. The source masses and separations are more consistent with thermal rather than turbulent fragmentation. It is not possible to unambiguously determine the dynamical state of most of the sources, as the uncertainty on virial parameter estimates is large. We find evidence for large-scale (∼1 pc) converging gas flows, which could cause the cloud to grow rapidly, gaining 104 M⊙ within 105 yr. The highest density gas is found at the convergent point of the large-scale flows. We expect this cloud to form many high-mass stars, but find no high-mass starless cores. If the sources represent the initial conditions for star formation, the resulting initial mass function will be bottom heavy. 
    more » « less